The Big Bang
There are several aspects of the Big Bang theory that puzzle me greatly, none more than the consequences of expansion.
As explained by current theory, we are not at the centre of the expansion. Since the whole universe is expanding, we would not remain at the origin. Therefore the universe should appear asymmetrical to us. i.e. there should be more of it in one direction than the other. As matter in the universe is emitting light, one side of the view from Earth should appear brighter than the other, all else being equal.
If we are not at the centre of the universe then as we look further into space and hence back in time, when the universe was smaller, one part of the sky should appear older than all the rest. The further we look and the further back in time we go that area should be smaller still. If we could see right back to the big bang it would be the oldest point in the sky.
Finally the universe is not expanding at the speed of light so the light emitted from the early universe should have simply rushed past us long ago and become undetectable. How do we see it now?
Reply
Cosmology is not my field, so I limit myself to just a few observations. Your view of the expanding universe has a basic problem, being rooted in concepts of the era before Einstein. Namely, you view as space being infinite and eternal, and regard the universe as a collection of matter and energy expanding in this space, starting from some initial instant which was the big bang, and from some initial location.
Current thinking is different. The matter and energy of the universe are filling all the space available to them, and have always done so. That space, however, is itself expanding.
The big bang is not an explosion in space, like that of a bomb, but an expansion of space itself.
A common analogy is the surface of an expanding rubber balloon. The rubber is filling all the area available to it, but that area is itself growing, and as it grows, the thickness (in our case, the density of matter in the universe) is gradually decreasing. The way 3-dimensional space is expanding can be described mathematically, but it is not otherwise intuitively graspable, except by that analogy--or perhaps (not sure how well that works) as expansion inside a higher dimensionality.
Look at it another way. If the universe started 13.5 billion years ago (a good guess), as we look into space, no place we see is more distant that 13.5 billion light years. The volume available is thus limited, though any point sees the same expansion, just as on the balloon.
---------------------